soft.fuzzy.sets package
Subpackages
- soft.fuzzy.sets.continuous package
- Submodules
- soft.fuzzy.sets.continuous.abstract module
ContinuousFuzzySet
ContinuousFuzzySet.area()
ContinuousFuzzySet.area_helper()
ContinuousFuzzySet.calculate_membership()
ContinuousFuzzySet.count_granule_terms()
ContinuousFuzzySet.create()
ContinuousFuzzySet.extend()
ContinuousFuzzySet.forward()
ContinuousFuzzySet.get_subclass()
ContinuousFuzzySet.load()
ContinuousFuzzySet.mask
ContinuousFuzzySet.reshape_parameters()
ContinuousFuzzySet.save()
ContinuousFuzzySet.split()
ContinuousFuzzySet.split_by_variables()
ContinuousFuzzySet.stack()
Membership
- soft.fuzzy.sets.continuous.group module
- soft.fuzzy.sets.continuous.impl module
- Module contents
Submodules
soft.fuzzy.sets.discrete module
Implements the discrete fuzzy sets.
- class soft.fuzzy.sets.discrete.BaseDiscreteFuzzySet(formulas: list, name: str)
Bases:
ABC
A parent class for all fuzzy sets to inherit. Allows the user to visualize the fuzzy set.
- abstract degree(element) NoReturn
Calculates degree of membership for the provided “element” where element is a(n) int/float.
- Parameters:
element – The element is from the universe of discourse.
- Returns:
NotImplementedError as this is an abstract method.
- fetch(element: int | float)
Fetch the corresponding formula for the provided element where element is a(n) int/float.
- Parameters:
element ('float') – The element is from the universe of discourse X.
- Returns:
formula – Returns the tuple containing the formula and corresponding Interval. Returns None if a formula for the element could not be found.
- Return type:
‘tuple’/’None’
- plot(lower: float = 0, upper: float = 100, samples: int = 100) -> (<class 'matplotlib.figure.Figure'>, <class 'matplotlib.axes._axes.Axes'>)
Graphs the fuzzy set in the universe of elements.
- Parameters:
lower ('float', optional) – Default value is 0. Specifies the infimum value for the graph.
upper ('float', optional) – Default value is 100. Specifies the supremum value for the graph.
samples ('int', optional) – Default value is 100. Specifies the number of values to test in the domain to approximate the graph. A higher sample value will yield a higher resolution of the graph, but large values will lead to performance issues.
- class soft.fuzzy.sets.discrete.DiscreteFuzzySet(formulas: List[tuple], name: str | None = None)
Bases:
BaseDiscreteFuzzySet
An ordinary fuzzy set that is of type 1 and level 1.
- degree(element: int | float)
Calculates degree of membership for the provided element where element is a(n) int/float.
- Parameters:
element ('float') – The element is from the universe of discourse X.
- Returns:
mu – The degree of membership for the element.
- Return type:
‘float’
- height() float
Calculates the height of the fuzzy set.
- Returns:
The height, or supremum, of the fuzzy set.
- class soft.fuzzy.sets.discrete.FuzzyVariable(fuzzy_sets: List[BaseDiscreteFuzzySet], name=None)
Bases:
BaseDiscreteFuzzySet
A fuzzy variable, or linguistic variable, that contains fuzzy sets.
- degree(element: int | float) Tuple[float]
Calculates the degree of membership for the provided element value where element is a(n) int/float.
- Parameters:
element – The element from the universe of discourse.
- Returns:
The degree of membership for the element.
- plot(lower: float = 0, upper: float = 100, samples: int = 100) -> (<class 'matplotlib.figure.Figure'>, <class 'matplotlib.axes._axes.Axes'>)
Graphs the fuzzy set in the universe of elements.
- Parameters:
lower – Default value is 0. Specifies the infimum value for the graph.
upper – Default value is 100. Specifies the supremum value for the graph.
samples – Default value is 100. Specifies the number of values to test in the domain
resolution (to approximate the graph. A higher sample value will yield a higher)
graph (of the)
issues. (but large values will lead to performance)
- Returns:
None