soft.fuzzy.unsupervised.cluster.online package

Submodules

soft.fuzzy.unsupervised.cluster.online.ecm module

Implements the Evolving Clustering Method as described in the DENFIS paper.

class soft.fuzzy.unsupervised.cluster.online.ecm.LabeledClusters(clusters, labels)

Bases: tuple

clusters

Alias for field number 0

labels

Alias for field number 1

soft.fuzzy.unsupervised.cluster.online.ecm.apply_evolving_clustering_method(dataset: SupervisedDataset, config: Config) LabeledClusters

Apply the Evolving Clustering Method to the input data.

Parameters:
  • dataset – The given dataset.

  • config – The configuration settings.

Returns:

The resulting clusters.

soft.fuzzy.unsupervised.cluster.online.ecm.general_euclidean_distance(vector_1: Tensor, vector_2: Tensor) Tensor

The general Euclidean distance metric as described in the DENFIS paper.

Parameters:
  • vector_1 – A two-dimensional Tensor, where rows are number of observations and columns are features.

  • vector_2 – A one-dimensional Tensor, where the columns are features.

Returns:

A one-dimensional Tensor, where the columns are the distances from each identified cluster thus far.

Module contents